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Abstract—This paper explains the design of a hybrid string
sort algorithm using CPU+GPU and explores the performance
traits of the algorithm. Datasets which don’t fit in the GPU mem-
ory can be sorted using our algorithm, although the maximum
size is bound by the CPU memory and the number of strings
in the dataset. Our algorithm performs the sorting by loading
strings from left to right, in successive columns of length “K”
and sorts them in each sorting step. Value of “K” is dynamic
as singletons are removed when they are formed. CPU performs
the data processing step of loading the next column of “K” bytes
from each string to be sorted and GPU performs the sorting
step, in an overlapped manner. A context lag between CPU and
GPU is observed as they perform overlapped executions and next
iteration depends on the previous. Results are shown on different
datasets having sizes ranging from 2 MB to 6.4 GB and different
after-sort tie-lengths. We compare our runtimes with the best
CPU string sorting implementations available today and explore
the possibilities for improvement in our algorithm.
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I. INTRODUCTION

String sorting is a well studied problem. There are numer-
ous applications where data consisting of strings needs to be
sorted [PZM+12], [VHPN09], [MGG12], [LGS+09], [GL10],
[ASA+09]. Sorting strings involves handling variable-length
keys as opposed to fixed-length keys. It is more challenging
as (a) string lengths are variable, and swapping strings is not
as simple as swapping fixed-length records, (b) strings are
compared one character at a time, instead of the entire key
being compared and require more instructions, and (c) strings
are traditionally accessed using pointers; the strings are not
moved from their original locations due to string copying costs
[SW08]. With present day architectures with multiple cores,
huge opportunities for exploiting the parallelism are offered by
the hardware. However, the memory that is available on highly
parallel architectures might not be sufficient in many scenarios,
especially when large databases are involved [GGKM06]. A
GPU may not be able to hold all the information required for
sorting a large number of strings all at once. String sorting
approaches using CPU and GPU in conjunction overcome this
limitation and facilitate memory scalibility. An algorithm using
external memory sorting suffers from an I/O bottleneck though
[AFGV97], [FPP06], because of low latency memory transfers
between the internal and external memory.

Streaming string sort is designed to sort large string data
on heterogeneous multicore architectures. Fast and efficient

string sort on GPU is used to sort the strings [DN13] and
the string data is streamed from the CPU to the GPU, when
needed. Comparison-based string sorting where CPU and GPU
are used [BSK13], and a fast BWC algorithm which uses all
cores available on the system, including both the CPU and
GPU [DN15] are studied, both of which use a static scheme
of work distribution in order to achieve overlapped execution
of CPU and GPU. In streaming sort, CPU and GPU depend
on each other, introducing more complexities to handling the
parallelism and the context lag due to overlap. The context
lag manifests itself in the form of information delay between
the GPU and CPU, in terms of arrangement of strings and
the number of unsorted strings.Context lag is handled by
maintaining an index map on the GPU and doing an index
adjustment on the GPU at the end of each step.

We provide results on benchmark datasets and datasets
designed to demonstrate scalibility to large data size. Average
after-sort tie-lengths define the difficulty of the dataset [DN13]
and we present results on datasets with different after-sort tie-
lengths. The main contribution of this paper includes (a) a scal-
able, hybrid, parallel string sorting algorithm on CPU+GPU
platform, which uses a fast, efficient GPU string sort and (b)
Comparative analysis of our algorithm and a set of parallel
CPU string sorting algorithms [BES14], on high-end and low-
end GPUs. Possibilities and opportunities for improvement in
our algorithm are explored using the results obtained.

II. RELATED WORK

In this section, previous sorting and string sorting algo-
rithms on CPU, GPU and a heterogeneous (CPU + GPU)
architecture have been noted.

A. CPU Algorithms

There are several CPU string sorting algorithms that have
been developed in the past. Some noteworthy string algorithms
are: Multi-key quicksort [BS97] is an algorithm that combines
quicksort and radix sort. Burstsort [SZR07], [SW08] combines
burst-trie [HZW02] with multi-key quicksort and radix sort
[MBM93]. MSD radix sort [KR09] organizes the strings into
buckets recursively based on each successive character in
the string corresponding to that recursion depth. A two-pass
counting method, where first pass counts the number of buckets
required and second pass scatters the string data and a one-pass
dynamic method, where the buckets are generated and resized



dynamically during execution, have been developed [KR09].
MSD radix sort uses insertion sort for sorting small buckets
and does not move entire strings but manipulates the string
pointers. Burstsort inserts the strings into a data structure called
burst-trie, in turn organizing them into buckets which can be
sorted within CPU cache memory. Once sorted in cache, these
strings do not need to be merged because the order is already
lexicographic in nature. [BES14] developed a parallel super
scalar sample sort for sorting strings on CPU which gains high
speedups over previous parallel and sequential string sorting
algorithms on CPU.

B. GPU Algorithms

An implementation of quicksort on GPU was developed
[CT10]. A GPU sample sort [LOS10] is a randomized version
of the GPU quick sort. At any given iteration, a set of splitters
are chosen that divides the list into many parts and each sublist
is processed independently in parallel. An implementation
of radix sort [SHG09] on GPU divided each pass of the
radix sort into four phases which were synchronized globally.
The focus is on minimizing scatters to global memory and
maximizing coherence among scatters. Merrill and Grimshaw
designed a radix sort, which is the fastest GPU implementation
of radix sort available [MG11]. An efficient merge sort on
GPU has been developed [DTGO12] which handles strings
well, however, it accesses costly global memory to resolve
ties. Deshpande and Narayanan developed a GPU string sort
[DN13] which falls into the category of counting method of
[KR09]. It loads strings from left to right in steps, moving
only indices and small prefixes for efficiency. They reduce
the number of sort steps by adaptively consuming maximum
string bytes based on the number of segments in each step.
Using Thrust primitives and removing singletons improves
their performance. A comparison-based string sorting algo-
rithm for a multi-GPU system was developed [TVJ+13]. It
uses a pivot selection algorithm and avoids data marshalling
steps altogether alongwith load balancing for the multi-GPU
system.

C. CPU+GPU Algorithms

Banerjee et al. developed a comparison-based sort using
a CPU+GPU platform [BSK13]. It uses the idea of GPU
sample sort and divides the input list into independent sublists
using splitters chosen uniformly at random. These independent
sublists are then sorted recursively and finally merged on
the GPU. Their implementation reported upto 24% faster
performance on a dataset of random strings. Their string sort
is a combination of sample sort and merge sort.

III. STREAMING STRING SORT

In this section, the algorithm for streaming string sort
is explained. The pseudocode is given in Algorithm 1 and
explained in detail in section C. Depending on the size of input,
we use only GPU, only CPU or CPU+GPU for string sorting.
If the input fits in GPU memory and can be sorted using only
GPU, such that the number of strings is above a threshold,
no CPU is involved in string sorting. In a CPU+GPU mode,
GPU performs the string sorting and CPU performs only data
processing. However, when the number of strings is below a
threshold, only CPU is used.

Algorithm 1 Streaming Sort

1: K← Max. bytes that can be allocated per string
2: LOADNEXTKBYTES()
3: CUDAMEMCPY(hostToDevice)
4: REPEAT
5: threadID← OMP GET THREAD NUM
6: if threadID = 0 then
7: GPUSTRINGSORT()
8: GPULOADNEXTKEYS()
9: GPUELIMINATESINGLETONS()

10: GPUSETSEGMENTBYTES()
11: if GPUSTEPCOMPLETE then
12: GPUINDEXADJUSTMENT()
13: GPUENDSTEP
14: if threadID = 1 then
15: LOADNEXTKBYTES()
16: CUDAMEMCPY(hostToDevice)

17: waitForThreadsMerge
18: CUDAMEMCPY(deviceToHost) . index array
19: UNTIL all are sorted

A. Overall System

The algorithm is divided into two parts: GPU string sorting
loop and CPU loop loading the next bytes from each string that
is to be sorted. Both these parts are executed in an overlapped
manner using OpenMP and the overall system is shown in
Figure 1. GPU string sorting loop handled by Thread 1 is
built on the GPU string sort [DN13], with some changes in
order to handle the context lag between CPU and GPU as they
are running in parallel. The modifications are explained in the
section B. The context lag is explained in detail in section D.

B. GPU String Sort

The significant features of the GPU string sort upon which
we build are (a) instead of moving entire strings in memory,
only its pointers (indices) are shuffled, (b) singletons are
removed (buckets which contain a single string) as they are
formed, to reduce the problem size in each iteration, (c)
length of segment ID for each key is adaptively fixed to sort
longest possible prefix in each step [DN13]. The string sort
was modified due to CPU running in parallel with GPU and
strings not fitting on GPU all at once. Due to CPU and GPU
running in an overlapped manner, CPU lags behind GPU by
one sorting step. The next sorting step depends on previous
one in terms of the order of strings because loading next keys
for each string requires the order to be maintained and the
CPU does not know the order until GPU finishes its step. The
major modifications include (a) an index map is maintained
now on GPU which maps the string indices in device array to
the string number in string array prepared on host, (b) at the
end of each GPU step, the index map is used to modify device
index array so that GPU loads the next keys from the correct
position in string array for each string. A minor modification
is made: while loading the next keys on the GPU, the required
characters were accessed one by one from global memory.
They are now fetched by two 8-byte aligned accesses from
global memory and stored in a register. Accessing them from
a register rather than the global memory in the GPU kernel
avoids some costly global accesses.



Figure 1: OVERALL SYSTEM ORGANIZATION

C. The Algorithm

The pseudocode for the streaming sort is given in Algo-
rithm 1. Assuming number of strings is above a threshold, if
input fits on the available GPU memory after allocating some
constant amount of memory required for sorting, string sorting
is performed using only GPU. The lines of code in the loop
marked by REPEAT is what is referred to as a “step”. It is
also shown in Figure 1. This loop contains a GPU loop and
a CPU loop. These loops run in an overlapped manner and
hence there is a context lag between the two. Context lag is
handled by using an index map (d IM) to maintain the same
order of strings on both. In GPU loop, when the N*K bytes
are exhausted, an index adjustment is done on for handling the
context lag (line 14).

1) Context lag: This takes place between CPU and GPU
due to execution in an overlapped fashion. CPU prepares data
for step i+1 when GPU performs sorting step i. The CPU does
not know what would be the value of N and the structure of
d IV for step i+1 until step i is completed on GPU. Hence,
there is a context lag between CPU and GPU in terms of
information about the number and order of strings. Due to
context lag, CPU loads the strings for step i+1 according to
information from step i-1. It results in loading more strings
than required. Though context lag forces some extra work,
it ensures correctness in loading the next keys for each string
remaining after GPU completes sorting step i. The order of the
strings loaded by CPU is realized on GPU by index adjustment,
explained below.

2) Index adjustment: To understand index adjustment, the
structure of the device index array needs to be understood
first. Each entry in the device index array has two parts (a)
the index of the string in the global string array on host
(h SV) and (b) the string number in the device string array
prepared by the host (d SV). Part (a) of d IV remains constant
throughout the string sorting procedure, as we do not move the
entire strings around. Part (b) of each entry keeps changing
according to the string number in d SV, as the order keeps
changing (or may remain same) in each step. Index of each
string in d SV would be a multiple of K and hence only
the string number is required. The index map is a mapping
from a string number to it’s number in the device string array
prepared by the host. It is used to modify part (b) of d IV such

that for an entry d IV[i] it’s new value for part (b) would be
d IM[(d IV[i]<<32)>>32]. The index adjustment is done on
GPU. Once the device index array is modified, the index map
is modified according to it, because device index array is sent
to host. CPU uses the order of strings specified by device index
array to prepare the string array.

Figure 2 explains the algorithm using first two sorting steps
on the input shown. When sorting step-2 is running, the CPU
loads (for step-3), K (= 2) bytes from N (= 7) strings as N = 7
after step-1. This explains the context lag. Now, to understand
the index adjustment, after step-1 is over, part(b) of index array
does not change as the initial index map is of the form d IM[i]
= i. However, the index map changes in step-1 as strings have
shuffled due to sorting. If value of part(b) in index array is V
and the entry is at index I in index array, the index map stores
it as d IM[V] = I, basically saying that the string number was
(V+1) initially but now it is (I+1). Using this index map, it can
be observed that in step-2 the part(b) of index array is modified
and in turn the index map is also modified. This explains the
concept of index adjustment.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We will explain the experiments performed in order to test
and analyze the performance of our algorithm.

A. Datasets

The datasets used for testing the algorithm are listed in
Table 1 with their descriptions. In order to test the algorithm
properly, there was a need to prepare datasets with sizes greater
than GPU memory. Hence, the datasets norandom, random
and partlyrandom have been prepared. The other datasets are
standard benchmark datasets1 and filelist is a real world dataset
which has been prepared by listing the filepaths obtained from
a server.

B. Discussion

From Table IV it can be observed that fixed-K has better
runtime than dynamic-K. Using a fixed-K throughout sorting
makes the CPU work less while preparing the data for next

1Sinha’s collection from https://panthema.net/2013/parallel-string-sorting



Figure 2: TRANSITIONS ARE MARKED AS (A), (B), (C) AND (D). (A) MEANS SORT, (B) MEANS LOAD SUCCESSORS, (C) MEANS ELIMINATE SINGLETONS AND (D) MEANS INDEX
ADJUSTMENT. THE DIAGRAM EXPLAINS THE FIRST TWO SORTING STEPS OF SORTING THE INPUT ACCORDING TO OUR ALGORITHM.

Name Size Description Max. tie length Avg. tie length
dictcalls 2.2 MB 100187 strings containing opcodes 35 15

artificial-5 50 MB 106 strings with A, varying lengths (1 to 100) 100 50
random 97 MB 106 strings of length approx. 100 5 2

artificial-2 98 MB 106 strings with A repeated approx. 100 times 101 100
artificial-4 162 MB 107 strings of characters a to i 80 13

words 238 MB Approx. 19 million words with no duplicates 157 7
genome 302 MB 31623000, approx. 30 million strings of a,t,g,c 9 8

url 305 MB 107 strings containing URLs 215 29
filelist 971 MB 107 strings containing filepaths 228 25

urls large 2.4 GB 4*107 URLs, subset of big URL dataset of [BES14] 3404 56
norandom 4.8 GB 107 strings containing only “a”, having different lengths 1006 78

totalrandom 4.8 GB 107 random strings, having different lengths 7 3

partlyrandom 6.4 GB 107 strings, made by permuting 495 66a set of 4 strings of fixed length, different number of times

Table I: DATASETS USED FOR THE EXPERIMENTS

Dataset GTX 580 GTX Titan CPU string sort Speedup
# Steps Time # Steps Time pS5-unroll pS5-equal pRS-16bit radixR CE7

dictcalls 1 8 1 10 22 21 21 12 1.5
artificial-5 1 77 1 75 171 166 290 295 2.2

random 1 9 1 8 140 144 107 119 13.4
artificial-2 1 106 1 83 216 220 562 464 2.6
artificial-4 1 206 1 152 627 705 837 1125 4.1

words 1 243 1 175 1136 1185 1211 1862 6.5
genome – – 1 262 1433 1592 1996 2526 5.5

url 1 432 1 316 734 756 1069 1945 2.3

Table II: TIME IN MILLISECONDS TO SORT THE BENCHMARK DATASETS ON THREE
DIFFERENT ARCHITECTURES. (I) GEFORCE GTX 580 + INTEL CORE I7 4790K QUAD-
CORE 4.4GHZ, (II) GEFORCE GTX TITAN + INTEL CORE I7 4790K QUAD-CORE 4.4GHZ,
(III) INTEL CORE I7 4790K QUAD-CORE 4.4GHZ (32G RAM). THE FOUR SORTING
ALGORITHMS USED ARE FROM [BES14] WITH THE SAME NOTATION.

step. It wastes GPU memory when the number of strings re-
maining are very less, while dynamic-K doesn’t waste memory.
However, dynamic-K increases CPU time. There is a tradeoff
between better use of memory bandwidth on GPU and faster
CPU data preparation step. The speedup in CPU preparation
step may be good but the total CPU time speedup is negligible
or no speedup is noticed at all, as a fixed-K also means that
GPU would exhaust the strings much faster. Dynamic-K is
better than fixed-K in terms of using memory bandwidth and
fixed-K implementation uses more number of steps than taken
by a dynamic-K one. These observations lead us to believe that
using dynamic-K is a better algorithm choice than fixed-K if
better memory bandwidth utilization is needed and fixed-K is
better if a faster runtime is required.

Obtaining results on different architectures has provided
an insight into how the algorithm behaves on different GPUs,

having different global memories and compute capabilities.
GTX Titan has compute v3.5 (6 GB of global memory) and
GTX 580 has compute v2.0 (1.5 GB of global memory), as
reported by the CUDA SDK v7.5 that we have used. Table
II and III show the runtimes on different architectures for
all the datasets. No runtime shown means either the CPU
memory was inadequate or the number of strings was high
enough to disallow an acceptable initial value of K. This is one
drawback of the algorithm. The speed of CPU in preparing
the next column of strings to be sorted varies according to
architecture. Less number of steps do not necessarily imply
that the total time taken for sorting would be less. Larger
value of K implies more CPU time in preparation step, but
less number of steps. Smaller value of K implies less CPU
time in preparation step, but more number of steps. In Table
II and III , we compare our runtimes with the runtimes of four
best CPU algorithms chosen from the algorithms in [BES14].
The code of the four implementations2 has been put together
for ease of comparison among them and we utilized it for
testing purposes. For benchmark datasets, our algorithm runs
in only-GPU mode as they fit in GPU memory and we gain
a maximum speedup of 13x for the dataset random. filelist
also runs in only-GPU mode and gains a speedup of 2.4x over
the best CPU string sorting time. For the datasets norandom,
totalrandom and partlyrandom, the timings are interesting. Our

2https://panthema.net/2013/parallel-string-sorting/parallel-string-sorting-
0.6.5.tar.bz2



Dataset GTX 580 GTX Titan CPU string sort Speedup
# Steps Time # Steps Time pS5-unroll pS5-equal pRS-16bit radixR CE7

filelist 1 991 1 692 1669 1643 3619 4545 2.4
norandom 38 23065 11 12966 11921 9705 22849 32946 0.7

totalrandom 1 374 1 580 3243 3258 3142 3458 8.4
partlyrandom 10 3685 8 3281 4999 4751 6659 7690 1.4

urls large – – 137 9641 4077 4056 7337 12590 0.4

Table III: TIME IN MILLISECONDS TO SORT THE DATASETS (USED FOR SHOWING
SCALABILITY) ON THREE DIFFERENT ARCHITECTURES. (I) GEFORCE GTX 580 + INTEL
CORE I7 4790K QUAD-CORE 4.4GHZ, (II) GEFORCE GTX TITAN + INTEL CORE I7 4790K
QUAD-CORE 4.4GHZ, (III) INTEL CORE I7 4790K QUAD-CORE 4.4GHZ (32G RAM). THE
FOUR SORTING ALGORITHMS USED ARE FROM [BES14] WITH THE SAME NOTATION.

Dataset
GTX Titan GTX 580

Dynamic K Fixed K Dynamic K Fixed K
# Steps Total # Steps Total # Steps Total # Steps Total

norandom 13 12684 16 12966 38 23065 53 21194
totalrandom 1 585 1 580 1 384 1 374

partlyrandom 4 4634 8 3281 10 3935 26 4284
urls large 10 9720 137 9641 – – – –

Table IV: RUNTIME IN MILLISECONDS FOR FIXED-K AND DYNAMIC-K

algorithm performs really well on the totalrandom dataset,
gaining a speedup of 8.4x. The dataset norandom has all
strings of same character and urls large has URLs with lots of
similarity among them. It is a bad case for our algorithm and
it performs worse than CPU. On partlyrandom, CPU performs
as good as our streaming string sort. This means that CPU
performs better than our algorithm on datasets which have
long tie-lengths, as in our algorithm breaking the ties requires
loading many successive columns from the string data.

V. CONCLUSION

As radix sort is the fastest on GPUs, it should be used
to develop string sorting algorithms which use it in order
to gain performance. Our algorithm is an exploration of this
possibility. Our algorithm is not suitable for datasets that fit
in the GPU memory as the context lag between the CPU
and GPU cannot be avoided when they are running in an
overlapped manner, which would make our algorithm perform
worse than an efficient only-GPU implementation. When the
number of strings is below a threshold and the tie-lengths are
high, an only-GPU or CPU+GPU implementation takes far
longer than only-CPU implementation. The advantage of this
algorithm is that there is no need to perform a static work
distribution initially for gaining parallelism by dividing work
into independent blocks; it is actually handled on the fly. The
use of a fixed-K when CPU+GPU mode is used, though wastes
some GPU memory, makes the sorting faster by avoiding long
CPU times.
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